Multiple Change-Points Estimation in Linear Regression Models via Sparse Group Lasso

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.

We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associat...

متن کامل

Sparse EEG/MEG source estimation via a group lasso

Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group l...

متن کامل

A Sparse-group Lasso

For high dimensional supervised learning problems, often using problem specific assumptions can lead to greater accuracy. For problems with grouped covariates, which are believed to have sparse effects both on a group and within group level, we introduce a regularized model for linear regression with `1 and `2 penalties. We discuss the sparsity and other regularization properties of the optimal...

متن کامل

Asymptotic properties of Lasso+mLS and Lasso+Ridge in sparse high-dimensional linear regression

Abstract: We study the asymptotic properties of Lasso+mLS and Lasso+ Ridge under the sparse high-dimensional linear regression model: Lasso selecting predictors and then modified Least Squares (mLS) or Ridge estimating their coefficients. First, we propose a valid inference procedure for parameter estimation based on parametric residual bootstrap after Lasso+ mLS and Lasso+Ridge. Second, we der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2015

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2015.2411220