Multiple Change-Points Estimation in Linear Regression Models via Sparse Group Lasso
نویسندگان
چکیده
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملMultivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.
We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associat...
متن کاملSparse EEG/MEG source estimation via a group lasso
Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group l...
متن کاملA Sparse-group Lasso
For high dimensional supervised learning problems, often using problem specific assumptions can lead to greater accuracy. For problems with grouped covariates, which are believed to have sparse effects both on a group and within group level, we introduce a regularized model for linear regression with `1 and `2 penalties. We discuss the sparsity and other regularization properties of the optimal...
متن کاملAsymptotic properties of Lasso+mLS and Lasso+Ridge in sparse high-dimensional linear regression
Abstract: We study the asymptotic properties of Lasso+mLS and Lasso+ Ridge under the sparse high-dimensional linear regression model: Lasso selecting predictors and then modified Least Squares (mLS) or Ridge estimating their coefficients. First, we propose a valid inference procedure for parameter estimation based on parametric residual bootstrap after Lasso+ mLS and Lasso+Ridge. Second, we der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2015
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2015.2411220